

Ashland NSP Lakefront Superfund Site

Cleanup Options Information Meeting
December 10, 2008

Remedial Investigation/Feasibility Study

- Looks at site conditions
- Determines the nature of waste
- J Assesses risk
- Reviews cleanup technology and the cost
- Evaluates cleanup options based on nine criteria

Remedial Investigation Results Soil, Ground Water, and Sediment

- Upper Bluff/Filled Rayine soil and ground water impacted by Manufactured Gas Plant waste
- Railroad Corridor and Kreher Park soil and ground water impacted
- Copper Falls Aquifer NAPL and associated dissolved phase ground water contamination (NAPL contaminants that remain undiluted, i.e. spilled oil)
- Chequamegon Bay 16 acres contaminated sediments between the Marina and the Prentice Avenue boat landing

Railway

Krelær Park Affected Lake Area

> Warning Buoys

Present

EPA Cleanup Evaluation Criteria

Threshold Criteria

(Each cleanup method must satisfy this criteria)

- Protecting human health and the environment
- Compliance with state and federal regulations

Criteria Balance (Technical criteria with detailed analysis)

- Ability to implement
- Long-term effectiveness
- Short-term effectiveness
- Reduce toxicity, mobility, and volume
- Cost

Modifying Criteria

(Considered after threshold and balancing criteria)

- J State Acceptance
- > *Community Acceptance

*Community Workshop
for Community Acceptance
October 25, 2007

- Community members attending workshop identified what would make the cleanup most acceptable
- Responses were organized under common themes

Community Workshop cont'd

- Time, cost, maximum future use, beauty & aesthetics, and least risk of revisiting cleanup were a few themes
- Doing it right the first time and most future use opportunities for the site were rated highest at the workshop

Remedial Investigation Results
Where will cleanup take place?

- Upper Bluff Area/Filled Ravine
 NSP Wisconsin property
- Kreher Park/Railroad corridor
- Copper Falls Aquifer
- Chequamegon Bay

Affected Lake Area

> Warning Booys

Present

RI Results - Upper Bluff

- Free product tars/oils at the base of the rayine
- Clay tile pipe ran from MGP area to seep area
- Some remnants of MGP structures still exist and contain MGP wastes
- Soils and groundwater impacted

RR Corridor and Kreher Park

- > Lakebed fill
 - wood waste from former lumber mill operations
 - solid waste/demolition debris
- Jacquides
 - seep area
 - waste tar dump
 - tank car siding
 - former wastewater treatment plant
- Seep area is outfall from clay tile pipe

RR Corridor and Kreher Park

- Soils and groundwater impacted
- Jars/oils exist as free product in areas
- Seep and waste tar dump areas
- Hydraulically connected to the filled ravine and lake/sediments

Copper Falls Aquifer

- > Free product mass
 - -30-70 feet depth
 - A dissolved phase plume extends north to the shoreline

RI Results - Sediments

- Approximately 16 acres including free product
- Jest covered with wood waste
- During wave events free product causes slicks

Details about the Feasibility Study What Cleanup Options were Considered? Cleanup involves

- -Soil
- Ground Water
- Sediments along the Kreher Park shoreline
 Presentation will discuss cleanup methods for each.

Cleanup Considered for Soil, Ground Water, and Sediments

Superfund site meaning that soil, contaminated ground water, and sediments remain in place with no engineering, maintenance, or monitoring

- Juff Area
- Kreher Park

Soil Cleanup Option— Containment or Capping Contaminated Area

- Stops rainwater from seeping through contamination and into ground water and surface water
- Stops wind from blowing contaminated soil to other areas
- Keeps people and animals from direct contact

Soil Cleanup Option Limited Removal

- Digging up soil from most contaminated areas
 - portions of Kreher Park
 - upper bluff fronting the park
- On-site or off-site disposal

Soil Cleanup Option Unlimited Removal Digging up all contaminated fill material and soil for off-site disposal

What's involved with digging and disposal? Backhoes, Bulldozers and Front-End Loaders

- Remove soil and put it on tarps or containers
- Cover soil to stop it from blowing or washing away
- Stop digging when tests show soil is not a risk
- Backfill area with clean soil
- Dispose off-site or on-site

Soil Cleanup Option Limited Removal and On-Site Thermal Treatment

- Remove contaminated soil or sediment by digging up material
- Use heat to treat contaminated soil
- Return treated soil to site as a backfill or off-site disposal

Soil Cleanup Option Limited Removal and Off-Site Treatment

- Dig up soil in most contaminated area (Upper Bluff) and move material off-site for treatment and disposal
 - Use heat to treat contaminated soil

Soil Cleanup Option Limited Removal and Onsite Soil Washing

- Dig up and wash soil to remove contaminants
 - Sift soil to remove large objects
 - Place soil in a scrubbing unit
 - Wash contaminated soil
 - Re-use water in the scrubbing unit or discharge for treatment
 - Use treated soil as backfill or dispose of offsite

Onsite Soil Washing

Areas of Ground Water Cleanup

- Juff Area
- > Kreher Park
- Copper Falls Aquifer

Ground Water Cleanup Option-Containment using Engineered Surface and Vertical Barriers

- Natural or man-made barriers to stop exposure of the movement of contaminants
- > Barriers are
 - Engineered surface barriers
 - Barrier Wells
 - Vertical Barrier Walls

What are Engineered Surface Barriers?

- > Asphalt cap
- Soil cap with a thick clay barrier, drainage layer and soil and vegetated top soil cover
- Multi-layer cap with a landfill liner made of heavy plastic material, a drainage layer, soil and vegetated top soil cover

Ground Water Cleanup Option
Barrier Wells and Vertical Barrier Walls
Upper Bluff and Kreher Park Areas

- Barrier wells will stop contaminants from moving off site
- Vertical barrier walls are made up of slurry walls or sheet pilings and used for shallow contaminated ground water in the ravine

Ground Water Cleanup Option In Place Treatment using Ozone Sparging

- Inject ozone into the ground to cleanup contaminants
 - Ozone is a gas that decomposes and reacts with contaminants in water
 - Ozone does not work for NAPL's (nonaqueous phase liquid) - contaminants that remain undiluted, i.e. spilled oil

Ground Water Cleanup Option In Place Treatment using Surfactant Injection and Removal

- Install wells below Miller Creek/Copper Falls
- Inject wetting agent to lessen tension between oil (NAPL's) and water
- Pump out contaminated water through wells to surface
- Place water into tank, then treatment system for cleaning and discharge into sanitary sewer

In Place Flushing

Ground Water Cleanup Option In Place Treatment using Permeable Reactive Barrier Walls

- Built below ground to cleanup polluted ground waiter
- Has tiny holes allowing ground water to flow
- Traps and treats contaminants
- Clean ground water flows out the other side of the wall

Permeable Reactive Barrier Walls

Ground Water Cleanup Option In Place Treatment using Chemical Oxidation

- Chemicals breaks up pollution in the ground water
- Jydrogen peroxide is a common oxidant
- Focus of SITE demonstration

Chemical Oxidation

Ground Water Cleanup Option
In Place Treatment using
Electrical Resistance Heating

- Delivers electric current underground through wells made of steel
- Converts ground water and water in soil to steam
- Evaporates chemicals

Ground Water Cleanup Option In Place Treatment using Steam Injection

- Steam injection forces steam underground through wells drilled in polluted areas
- Steam heats the area and mobilizes, evaporates, and breaks down contaminants

In-Place Thermal Treatment

Ground Water Cleanup Option Removal using Ground Water Extraction

- > Pump and Treat
 - Bring polluted ground water to the surface for cleaning
 - Equip "extraction wells" with pumps and pull polluted ground water into the wells and up to the surface
 - Place water into a holding tank and then on to a treatment system for cleaning

Sediment Cleanup Options Containment and Removal

- Soutainment Placing one or more layers of material over contaminated sediments (mud)
- Removal Dredging or gathering up bottom sediments and disposing sediments in a different location

Dradaina

Dry Dredging contaminated area containing

- Build sheet pile wall off Kreher Park shoreline
- Pump out water and dry out shoreline
- Remove sediment/NAPL treat on-site or remove off-site

Wet Dredging

- Remove contaminated sediment outside of wall and place sediment on barge
- Treat on-site or remove off-site

Sediment Cleanup Option Removal using Wet Dredging

Wave Extenuators used for Sediment Removal Process

Sediment Cleanup Option Containment

More Sediment Cleanup Options

- Institutional Controls Access restrictions used in combination with other options
- Biological/Chemical degradation
- Treatment Thermal treatment using heat
- Disposal On-site or Off-site

Misit's next?

- PA recommends cleanup option and schedules proposed plan public meeting
- EPA establishes a public comment period
- EPA and DNR evaluates public reaction to the recommended cleanup
- EPA responds to comments in a "responsiveness summary"
- Record of Decision explaining selected cleanup plan is issued

EPA Remedy Review Board Goals for projects over \$25 million

- Improve consistency of Superfund cleanup selections
- Improve cost-effectiveness
- Confirm decision-making at high cost sites is technically sound
- Ensure decisions follow current law

